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The following corrections apply to the 3rd edition of the book published in March 2015 by Elsevier
Ltd. (ISBN: 978-0-08-099995-1).

Section 2.3: Viscous Stresses
Figure 2.3b on page 15 (stress components got interchanged):
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Section 3.1.5: Central and Upwind Schemes
Text on page 42, initial paragraph:

... In this context, it is convenient to differentiate between the discretization of the convective and the
viscous fluxes (F⃗c and F⃗v in Eq. (2.19), respectively). ...

Chapter 4: Structured Finite-Volume Schemes
Equation (4.64) on page 96:

M−
R =



0 if MR ≥ +1

−1
4
(MR − 1)2 if |MR| < 1

MR if MR ≤ −1 .
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Chapter 5: Unstructured Finite-Volume Schemes
Equation (5.9) on page 128:

r⃗c =
Ω123 r⃗c,123 + Ω134 r⃗c,134

Ω123 + Ω134
.

Equation (5.23) and text following on page 135:

n⃗01ΔS01 = n⃗LΔSL + n⃗RΔSR ,

and the total face area is given by: ΔS01 = ||⃗nLΔSL + n⃗RΔSR||2 .

Equation (5.55) on page 152:

θ1Δxi1 θ1Δyi1 θ1Δzi1
θ2Δxi2 θ2Δyi2 θ2Δzi2

...
...

...
θjΔxij θjΔyij θjΔzij
...

...
...

θNAΔxiNA θNAΔyiNA θNAΔziNA



∂xU∂yU
∂zU


i

=



θ1 (U1 − Ui)
θ2 (U2 − Ui)

...
θj (Uj − Ui)

...
θNA(UNA − Ui)


Equation (5.59) on page 153:

r11 =

√√√√ NA∑
j=1

(θjΔxij)2

r12 =
1
r11

NA∑
j=1

θ2j ΔxijΔyij

r22 =

√√√√ NA∑
j=1

(θjΔyij)2 − r212

r13 =
1
r11

NA∑
j=1

θ2j ΔxijΔzij

r23 =
1
r22

 NA∑
j=1

θ2j ΔyijΔzij −
r12
r11

NA∑
j=1

θ2j ΔxijΔzij



r33 =

√√√√ NA∑
j=1

(θjΔzij)2 − (r213 + r223) .

Equation (5.62) on page 153:

αij,1 =
θj Δxij
r211

αij,2 =
θj
r222

(
Δyij −

r12
r11

Δxij
)

αij,3 =
θj
r233

(
Δzij −

r23
r22

Δyij + βΔxij
)
,
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Equation (5.74) on page 162: (
∂U
∂ℓ

)
IJ
≈ UJ − UI

ℓIJ
,

Chapter 6: Temporal Discretization
Equation (6.12) on page 173:

W⃗(k)
I = W⃗(0)

I −
[
(R⃗Q)

(k−1)
I − Ωn

I Q⃗
(k−1)
I

] Ωn+1
I

αkΔtI
Ī −

(
∂Q⃗
∂W⃗

)(k−1)

I

−1

Equation (6.19) on page 175:

Λ̂
I
v = max

[
4
3ρ

(μL + μT),
γ
ρ

( μL
PrL

+
μT
PrT

)]
(ΔSI)2

Ω

and in similar way Eq. (6.21) on page 175 and Eq. (6.24) on page 176.

Reference [20] related to Eq. (6.22) on page 176:
Instead, the original reference is: Frink, N.T.; Parikh, P.; Pirzadeh, S.: A Fast Upwind Solver for the
Euler Equations on Three-Dimensional Unstructured Meshes. AIAA Paper 91-0102, 1991.

Equation (6.59) on page 193:

DΔW⃗(1)
i = −R⃗n

i −
∑
j∈L(i)

1
2

[
(ΔF(1)

c )jΔSij − (r∗A)j̄IΔW⃗
(1)
j

]

DΔW⃗n
i = DΔW⃗(1)

i −
∑
j∈U(i)

1
2

[
(ΔFn

c)jΔSij − (r∗A)j̄IΔW⃗n
j

]
,

Equations (6.76), (6.77) and the related text on page 199:

R⃗(p+1)
I ≈ R⃗(p)

I + J̄I ΔW⃗(p)

with ΔW⃗(p) = W⃗(p+1) − W⃗(p) and J̄ = ∂R⃗/∂W⃗ being the Jacobian matrix. Inserted into Eq. (6.75) while
formulated as an iterative procedure, we obtain for the solution at stage k the expression[

(ΩM̄)I
Δt

+ akk J̄I
]
ΔW⃗(p) =

(ΩM̄)I
Δt

(
W⃗n

I − W⃗(p)
I

)
−

k−1∑
l=1

akl R⃗(l)
I − akk R⃗(p)

I .

This is formally equivalent to Eq. (6.28) and can be solved by any of the implicit methods from the pre-
vious subsections. Upon convergence, the solution W⃗(p+1) of Eq. (6.77) approximates the intermediate
solution at stage k from Eq. (6.75).

Equation (6.85) on page 204:

W⃗(k)
I = W⃗(0)

I − αkΔt∗I
Ωn+1

I

[̄
I+

3
2 Δt

αkΔt∗I M̄n+1
]−1

·
[
R⃗I(W⃗(k−1)) +

3
2 Δt

(ΩM̄)n+1
I W⃗(k−1)

I − Q⃗∗
I

]
.
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Chapter 7: Turbulence Modeling
Equation (7.4) on page 216:

Ωij =
1
2

(
∂vj
∂xi

− ∂vi
∂xj

)
.

Equation (7.38) on page 226 and the text below it:

S̃ = S+
ν̃

κ2d2
fv2 ,

fv1 =
χ3

χ3 + C3
v1
, fv2 = 1− χ

1+ χfv1
,

χ =
ν̃
νL

,

where S stands for the magnitude of the mean rotation rate, that is,

S =
√
2ΩijΩij ,

and where Ωij is given by Eq. (7.4) . In order to avoid numerical difficulties, the term S̃must never become
zero or negative. One possibility is simple limiting like S̃ = max(S̃, 0.3 S). More elaborate approaches
were suggested in Ref. [49].

Equation (7.39) on page 226:

fw = g
(
1+ C6

w3

g6 + C6
w3

)1/6

,

g = r+ Cw2(r6 − r) , r = min
[ ν̃
S̃ κ2d2

, 10
]
.

Equation (7.41) on page 227:

Cb1 = 0.1355 , Cb2 = 0.622 ,

Cv1 = 7.1 , σ = 2/3 , κ = 0.41 ,

Cw1 = Cb1/κ2 + (1+ Cb2)/σ , Cw2 = 0.3 , Cw3 = 2 ,

Ct1 = 1, Ct2 = 2, Ct3 = 1.2, Ct4 = 0.5 .

Text above Equation (7.42) on page 227:

As pointed out in Ref. [47] , it is convenient to substitute the diffusion term in Eq. (7.36) , that is,

1
σ

{
∂

∂xj

[
(νL + ν̃)

∂ ν̃
∂xj

]
+ Cb2

∂ ν̃
∂xj

∂ ν̃
∂xj

}

by the following expression ...
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Text to Initial and boundary conditions on page 228:

The initial value of ν̃ is usually taken as ν̃ = 0.1 νL. The same value is also specified at inflow or far-field
boundaries. However, in cases where the transition term ft1 (and then mostly also ft2) is omitted, that is,
for fully turbulent flows, ν̃ should be set to 3–5 times the value of νL at the inlet or far-field. At outflow
boundaries, ν̃ is simply extrapolated from the interior of the computational domain. At solid walls, it is
appropriate to set ν̃ = 0 and hence μT = 0.

References on page 246:

[49] Allmaras, S.R.; Johnson, F.T.; Spalart, P.R.: Modifications and Clarifications for the Implemen-
tation of the Spalart-Allmaras Turbulence Model. ICCFD7-1902, 7th Int. Conf. on Comput. Fluid Dy-
namics, 2012.

Chapter 8: Boundary Conditions
Equation (8.7) on page 257:

(F⃗c,w ΔS)i,2 =


0

(nx)i−1,2 (pw)i−1/4
(ny)i−1,2 (pw)i−1/4
(nz)i−1,2 (pw)i−1/4

0


ΔSi−1,2

2
+


0

(nx)i,2 (pw)i+1/4
(ny)i,2 (pw)i+1/4
(nz)i,2 (pw)i+1/4

0


ΔSi,2
2

.

Equation (8.8) and related text on page 258:

The pressures (pw)i−1/4 and (pw)i+1/4 in Eq. (8.7) can be obtained by linear interpolation, for example,

(pw)i+1/4 =
1
4
(3pi,2 + pi+1,2) .

Equation (8.17) on page 261:

ρi,2 =
pi,3
Tw R

and (ρE)i,2 =
pi,3
γ − 1

.

Chapter 9: Acceleration Techniques
Point 5 of the solution steps described on page 311:

5. Multiply the residual by αk Δt/Ω.

Equation (9.59) on page 313 (last term in the first column):

P̄ =



ρp 0 0 0 ρT
ρp u ρ 0 0 ρT u

ρp v 0 ρ 0 ρT v

ρp w 0 0 ρ ρT w

ρpH+ ρhp − 1 ρu ρv ρw ρTH+ ρhT


.
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Text at the bottom of page 313:

where αp and αT are the compressibility coefficients at constant temperature and pressure, respectively ...

Text on page 318:

... the condition number Eq. (9.40) is reduced (the condition number is CN ≈ 1.62) and the ...

Chapter 10: Consistency, Accuracy and Stability
Equation (10.34) on page 349 (sign in front of the second term):

(DI
x)c ΔUn =

Λ
2
(ΔUn

i+1 − ΔUn
i−1)− ΛεI(ΔUn

i+1 − 2ΔUn
i + ΔUn

i−1) ,

Equation (10.37) on page 350:

(DI
x)v ΔUn =

Λv

Δx
(ΔUn

i+1 − 2ΔUn
i + ΔUn

i−1) .

Section 11.2.5: Assessment and Improvement of Grid Quality
Text on the top of page 388:

6. (volume)4/ (sum of squares of the areas of all triangular faces)3 = 4.5725 · 10−4.
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A.11 TRANSFORMATION FROM CONSERVATIVE
TO CHARACTERISTIC VARIABLES
Matrix of the left eigenvectors Eq. (A.86) on Page 435 (term in the 4th column on the 2nd row):

T̄−1 =


nxa5 − (nzv− nyw)ρ−1 nxa1u c−2 nxa1v c−2 + nzρ−1

nya5 − (nxw− nzu)ρ−1 nya1u c−2 − nzρ−1 nya1v c−2

nza5 − (nyu− nxv)ρ−1 nza1u c−2 + nyρ−1 nza1v c−2 − nxρ−1

a2(φ− cV) −a2(a1u− nxc) −a2(a1v− nyc)
a2(φ + cV) −a2(a1u+ nxc) −a2(a1v+ nyc)

nxa1wc−2 − nyρ−1 −nxa1c−2

nya1wc−2 + nxρ−1 −nya1c−2

nza1wc−2 −nza1c−2

−a2(a1w− nzc) a1a2
−a2(a1w+ nzc) a1a2

 .
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