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The following corrections apply to the 3rd edition of the book published in March 2015 by Elsevier
Ltd. (ISBN: 978-0-08-099995-1).

Section 2.3: Viscous Stresses
Figure 2.3b on page 15 (stress components got interchanged):
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Section 3.1.5: Central and Upwind Schemes

Text on page 42, initial paragraph:

... In this context, it is convenient to differentiate between the discretization of the convective and the
viscous fluxes (F. and F), in Eq. (2.19), respectively). ...

Chapter 4: Structured Finite-Volume Schemes
Equation (4.64) on page 96:

0 if Mg > +1

Mp = —— (Mg —1)* if [Mz| <1

My it My < —1.



Chapter 5: Unstructured Finite-Volume Schemes

Equation (5.9) on page 128:
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Equation (5.23) and text following on page 135:
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and the total face area is given by: ASy; = || AS], + HgrASk||> -

Equation (5.55) on page 152:
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Equation (5.59) on page 153:
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Equation (5.62) on page 153:
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Equation (5.74) on page 162:
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Chapter 6: Temporal Discretization

Equation (6.12) on page 173:
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Equation (6.19) on page 175:
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and in similar way Eq. (6.21) on page 175 and Eq. (6.24) on page 176.

Reference [20] related to Eq. (6.22) on page 176:
Instead, the original reference is: Frink, N.T.; Parikh, P.; Pirzadeh, S.: A Fast Upwind Solver for the
Euler Equations on Three-Dimensional Unstructured Meshes. AIAA Paper 91-0102, 1991.

Equation (6.59) on page 193:
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Equations (6.76), (6.77) and the related text on page 199:
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with AW®) = Ww+) — ) and J = OR / OW being the Jacobian matrix. Inserted into Eq. (6.75) while
formulated as an iterative procedure, we obtain for the solution at stage & the expression
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This is formally equivalent to Eq. (6.28) and can be solved by any of the implicit methods from the pre-
vious subsections. Upon convergence, the solution W¥+!) of Eq. (6.77) approximates the intermediate
solution at stage k from Eq. (6.75).

Equation (6.85) on page 204:
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Chapter 7: Turbulence Modeling
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Equation (7.38) on page 226 and the text below it:

Equation (7.4) on page 216:
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where § stands for the magnitude of the mean rotation rate, that is,

S=1/2Q;Q,;,

and where ;; is given by Eq. (7.4) . In order to avoid numerical difficulties, the term S must never become
zero or negative. One possibility is simple limiting like S = max(S, 0.3 S). More elaborate approaches
were suggested in Ref. [49].

Equation (7.39) on page 226:
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Equation (7.41) on page 227:
Cp =0.1355, Cp, =0.622,
Ch=71, o=2/3, k=041,
Coi =Cp /i + (1 +Cr)jfo, Cnn=03, Cn=2,
Chi=1 Ch=2 Csz=12, Cyu=05.

Text above Equation (7.42) on page 227:

As pointed out in Ref. [47] , it is convenient to substitute the diffusion term in Eq. (7.36) , that is,
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by the following expression ...



Text to Initial and boundary conditions on page 228:

The initial value of v is usually taken as v = 0.1 v;. The same value is also specified at inflow or far-field
boundaries. However, in cases where the transition term f;; (and then mostly also f;,) is omitted, that is,
for fully turbulent flows, v should be set to 3—5 times the value of v; at the inlet or far-field. At outflow
boundaries, v is simply extrapolated from the interior of the computational domain. At solid walls, it is
appropriate to set v = 0 and hence ;= 0.

References on page 246:

[49] Allmaras, S.R.; Johnson, F.T.; Spalart, P.R.: Modifications and Clarifications for the Implemen-
tation of the Spalart-Allmaras Turbulence Model. ICCFD7-1902, 7th Int. Conf. on Comput. Fluid Dy-
namics, 2012.

Chapter 8: Boundary Conditions
Equation (8.7) on page 257:
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Equation (8.8) and related text on page 258:

The pressures (p,,);—1/4 and (py,)i11/4 in Eq. (8.7) can be obtained by linear interpolation, for example,
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Equation (8.17) on page 261:

Pi3 Pi3
LN = d E i = — .
pl,z TWR an (p ) 72 y _ 1
Chapter 9: Acceleration Techniques
Point 5 of the solution steps described on page 311:
5. Multiply the residual by a; At/Q.
Equation (9.59) on page 313 (last term in the first column):
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Text at the bottom of page 313:

where @, and a7 are the compressibility coefficients at constant temperature and pressure, respectively ...

Text on page 318:

... the condition number Eq. (9.40) is reduced (the condition number is Cy ~ 1.62) and the ...

Chapter 10: Consistency, Accuracy and Stability

Equation (10.34) on page 349 (sign in front of the second term):
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Equation (10.37) on page 350:
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Section 11.2.5: Assessment and Improvement of Grid Quality

Text on the top of page 388:

6. (volume)*/ (sum of squares of the areas of all triangular faces)® = 4.5725 - 10~*.



A.11 TRANSFORMATION FROM CONSERVATIVE
TO CHARACTERISTIC VARIABLES

Matrix of the left eigenvectors Eq. (A.86) on Page 435 (term in the 4th column on the 2nd row)
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