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Abstract

This paper describes a recently developed flow solver
intended for the simulation of solid rocket motors.
It solves the integral form of the 3-D Euler/Navier-
Stokes equations on moving and/or deforming grids.
The grids are structured and can be composed of an
arbitrary number of blocks. The object oriented de-
sign of the flow solver enables an easy addition of
physical modules for the modeling of turbulence, par-
ticles, smoke, species and radiation. The solver con-
tains a module to move the interior grid including the
block boundaries according to the boundary deforma-
tion. Furthermore, the flow solver is able to exchange
data with an exterior program through a set of stan-
dard interfaces. This feature is used to supply the
flow solver with boundary conditions (e.g. related to
the burning surface) as well as with the movement of
the surface grid due to burn back and/or structural
deformation. The numerical schemes utilized and the
implementation are described in some detail. The
accuracy of the new flow solver is demonstrated for
three solid rocket motors.

1 Introduction

Nowadays, there is a growing demand for high-fidelity
flow simulations in complex systems like in turboma-
chinery [1] or in solid rocket motors [2]. The goal is
to obtain deep insight into the physical and chemical
processes, which are difficult or impossible to mea-
sure. Also, it is required to simulate failure scenarios,
which cannot be investigated experimentally. In or-
der to achieve dependable predictions, it is necessary
to base the numerical models on first principles rather
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than on correlations. Such complex simulations re-
quire not only powerful computer systems with up
to several thousand processors, but also advanced so-
lution methodologies and software design. The flow
solver becomes one component of a coupled multidis-
ciplinary system. In the case of solid rocket motors,
for example, the fluids code has to communicate not
only with physical modules for turbulence, particles,
radiation, etc., but also with a structures code and a
dynamic burn module.

This papers discusses in some detail the implemen-
tation of the new flow solver and the grid motion
scheme for complex solid rocket motor simulations. It
presents numerical results obtained for three different
rocket motors as well as comparisons to experimental
data.

2 Governing Equations

Equations being solved are the time-dependent
Navier-Stokes equations in integral form on moving
and/or deforming grid

∂

∂t

∫
Ω

~W dΩ +
∮

∂Ω

(~FM
c − ~Fv) dA =

∫
Ω

~QdΩ . (1)

In Eq. (1), ~W denotes the vector of conserved vari-
ables, ~Fc the convective fluxes on moving grid, ~Fv the
viscous fluxes, and Ω is the control volume with the
surface ∂Ω. Furthermore, dA represents a surface el-
ement of ∂Ω and ~Q stands for the source term. The
convective fluxes ~FM

c become on a dynamic grid

~FM
c = ~Fc − Vt

~W (2)

with ~Fc denoting the standard convective fluxes and
Vt being the contravariant velocity of the face of the
control volume. Hence,

Vt = nx
∂x

∂t
+ ny

∂y

∂t
+ nz

∂z

∂t
, (3)
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where nx, ny, and nz represent the Cartesian compo-
nents of the outward facing unit normal vector of the
surface ∂Ω.

In order to avoid errors induced by a deformation
of the control volumes, the Geometric Conservation
Law (GCL) must be satisfied. The integral form of
the GCL reads [3]

∂

∂t

∫
Ω

dΩ−
∮

∂Ω

Vt dS = 0 . (4)

Additional equations have to be solved along with
Eqs. (1) and (4) in the case of a multi-phase flow
and for the species concentrations. These will not be
discussed in the present paper. In the simulations
presented here, the evaluation of pressure, tempera-
ture and the speed of sound was based on the perfect
gas assumption.

3 Spatial Discretization

The governing equations (1) are discretized and
solved on 3-D, multi-block structured grids using a
cell-centered finite-volume scheme. The convective
fluxes ~FM

c in Eq. (1) are approximated either by a
central scheme with scalar artificial dissipation [4], or
by the upwind Roe scheme [5]. The upwind scheme
employs the MUSCL approach [6] with κ=1/3 and
the limiter of Hemker and Koren [7], which results
in slightly higher than 2nd-order accuracy on smooth
grids. It is planned to implement the MAPS (Mach
Number-Based Advection Pressure Splitting) scheme
[8], which would be more suitable for chemically re-
acting flows.

The viscous fluxes ~Fv in Eq. (1) are centrally dis-
cretized in the standard way. Gradients of the ve-
locity components and of the temperature at the cell
faces are obtained using Green’s theorem and an aux-
iliary control volume. A variety of LES schemes was
recently added to the solver for the simulation of tur-
bulent flows.

4 Temporal Discretization

The discretized governing equations (1) can be writ-
ten in the form

d

dt
(Ω ~W ) + ~R = 0 , (5)

where the residual ~R is an approximation of the in-
tegral over the fluxes and the source term in Eq. (1).
The set of ordinary differential equations (5) is solved
in a time accurate fashion using either the classical

4-stage Runge-Kutta scheme in low-storage formula-
tion or an implicit dual-time stepping scheme. In the
later case, the time derivative in Eq. (5) is approx-
imated by an implicit backwards difference formula.
A 2nd-order accurate, A-stable scheme is given by [9]

3Ωn+1

2∆t
~Wn+1 − 2Ωn

∆t
~Wn +

Ωn−1

2∆t
~Wn−1

+~R( ~Wn+1) = 0

(6)

with n being the time level, i.e. t = t0 + n∆t. A 3rd-
order accurate implicit scheme is also available in the
code. It reads [10]

11Ωn+1

2∆t
~Wn+1 −9Ωn

∆t
~Wn +

9Ωn−1

2∆t
~Wn−1

−Ωn−2

∆t
~Wn−2 + ~R( ~Wn+1) = 0 .

(7)

Equation (6) or (7) is solved by driving a modified
system (5), i.e.

d

dτ
(Ω~U) + ~R∗(~U) = 0 (8)

to steady-state in the pseudo time τ (thus ~R∗ = 0).
In Eq. (8), ~U is an approximation to ~Wn+1 and ~R∗ is
defined by Eq. (6) or (7), respectively. Currently, the
integration of Eq. (8) in pseudo time is accomplished
by an explicit multistage scheme accelerated by local
time stepping and implicit residual smoothing. How-
ever, it is intended to employ the implicit LU-SGS
scheme [11], [12] and multigrid [13] instead. Even in
its present form, the implicit scheme is able to reduce
the CPU-time for the simulation of an inviscid flow
in a typical solid rocket motor by a factor of 6 to 7
as compared to the explicit Runge-Kutta scheme.

5 Grid Motion

Due to the burn-back of the solid propellant and
structural deformations, it is necessary to constantly
adjust the interior grid. It is required that the grid
motion works in parallel on all blocks since the com-
plete grid cannot be kept in the memory of one pro-
cessor. Parallel grid motion is also important for com-
putational efficiency of the flow solver. Two different
grid motion schemes are available in the code and will
be described next.

The first algorithm initially moves the grid in each
block separately by using the linear Transfinite Inter-
polation (TFI) method [14] with the blending func-
tions of Soni [15]. TFI is employed to interpolate
the deformation of the block boundaries onto the grid
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from the previous time step. After this initial step,
deformations are exchanged between the blocks. This
is important in cases where a block shares only a point
or a line with the moving surface, as the block 2 in
Fig. 1. As the last step, grids are regenerated inside
those blocks, whose boundaries were moved by adja-
cent blocks.

In cases with a large surface movement, it becomes
necessary to deform and move grid blocks even far
away from the surface. This situation is handled by a
second algorithm. This scheme globally smoothes the
grid and the block boundaries by solving a Laplace
equation [16] for the displacements. Jacobi iteration
is employed for this purpose since it can be easily
parallelized. After the smoothing, the original spac-
ing of the grid lines is mapped back onto the block
boundaries. This way, no source terms are needed to
control the grid spacing, which results in a faster and
more stable algorithm. Grid inside the blocks is then
regenerated using TFI as in the first method.

6 Implementation

The flow solver is written in Fortran 90 using an ob-
ject oriented approach. User derived types are em-
ployed to encapsulate data of the core solver and
of each physical module (like turbulence, particles,
smoke, etc.). A set of standardized interfaces han-
dles all interactions between the core solver and the
modules, as well as between the modules themselves.
This greatly simplifies the upgrade or replacement of
a module. Whenever possible, generalized functions
are provided (like for the calculation of face gradi-
ents), which can be utilized by any of the physical
modules. In order to facilitate the use of different gas
models, all calculations of dependent variables like
pressure, temperature, speed of sound, or viscosity
are encapsulated in a single module.

The flow solver is implemented as a library with
two top-level functions for initialization and solution
advancement. The library is linked to an external
driver, which provides boundary conditions for all
burning and/or deforming surfaces, and also controls
the overall time-stepping procedure. Thus, there is no
rocket specific code inside the flow solver. The idea
is to encapsulate the three main tasks: flow solution,
structural response and dynamic burning into sepa-
rate libraries. The driver program is then responsible
for the data exchange [2].

The flow solver allows the use of different physical
or gas models in each block (e.g. LES – RANS). This
feature is also important for the simulation of the in-
ternal together with the external flow past a rocket

in flight. The solver is prepared for the treatment of
non-matching grid interfaces. Furthermore, work is
in progress on the coupling to an unstructured grid
[17], [18]. Standard MPI is employed for the paral-
lelization. In order to improve the parallel efficiency,
communication is hidden behind computation. The
performance for a scaled problem (constant work per
processor) can be seen in Fig. 2 for up to 960 proces-
sors.

Physical boundary conditions and the data ex-
change between the blocks utilize the concept of
dummy cells. A correct implementation of the vis-
cous terms and of LES in a multi-block framework
requires a proper treatment of dummy cells located
at the corners and edges of the computational space.
The donor block and cell for each edge or corner cell
of a block are located by a search procedure work-
ing in the index space. The search is conducted only
once at the beginning of a run, or if the grid topol-
ogy changes. This approach avoids the usual multiple
sends and receives when flow variables in the edge and
corner cells are updated.

7 Simulation Results

The flow solver was initially validated using relatively
simple test cases like the laminar flat plate or the noz-
zleless rocket motor [19], for which analytical solu-
tion or experimental data are readily available. Here,
larger and more complex test cases are discussed. All
simulations reported here were conducted for inviscid
flow only.

7.1 Motor 13

The first case represents the NAWC Tactical Motor
Number 13 [20], [21]. The motor is about 2 meters
long and the propellant consists of a single cylindri-
cal section, which is tapered at the rear end. There
is a large room at the head end for instrumentation.
The surface grid of the fluids domain is displayed in
Fig. 3. The domain behind the nozzle, which can
be partly seen in the plot, encloses the plume re-
gion. The simulation was started with all propellant
ignited. Grid movement due to burn back was ne-
glected. A comparison between the numerically ob-
tained quasi-steady head-end pressure and measured
data is given in Fig. 4. Two different grids were em-
ployed, a fine one with 414,208 cells and a coarse grid
with 76,608 cells. Because of the instantaneous ig-
nition and dynamic burning not being modeled, the
simulation shows much faster pressurization and no
spike. However, the quasi steady pressure agrees



AIAA 2003-5111 4

for both grids reasonably well with the experimen-
tal data. A snapshot of the static temperature in
mid-section is shown in Fig. 5. As it can also be seen
in Fig. 6, the flow in the head end section is highly
non-symmetrical. The flow pattern also changes in
time. This behavior needs to be further investigated
using a much finer grid and viscous flow.

7.2 Titan IV SRMU

This case represents the complete flow domain of the
Titan IV SRMU. All relevant geometrical features
were modeled, including the star-grain region, the
slots between the three segments as well as the stress
relieve grooves. The surface of the initial fluids do-
main can be seen in Fig. 7 together with the block
boundaries. As in the case of Motor 13, the plume
region was modeled as well. The time history of the
head-end pressure is displayed in Fig. 8. It was again
assumed that the whole propellant was initially ig-
nited. Measurements and simulation of the head-
end pressure presented in Ref. [22] indicate a value of
about 10 MPa. The result of the current simulation
is 9.5 MPa, which is in a reasonable agreement. The
runtime for 1.6 seconds of physical time was about 20
hours on 512 processors (IBM-SP). The temperature
field shortly after ignition is displayed in Fig. 9.

7.3 Attitude Control Motor

The last case represents a small (few inches long),
fast burning solid rocket motor. The surface grid of
the initial fluids domain is rendered in Fig. 10. The
complete burn out was simulated in this case. The
movement of the surface nodes due to burn back was
approximated by Huygens’ construction. A compari-
son of the head-end pressure between the present flow
solver and the prediction by a proprietary analysis
code (validated by experiments) is depicted in Fig. 11.
The agreement is very favorable, in particular in the
case of the Roe upwind discretization. The head end
pressure exhibits significant oscillations in time due
to acoustic disturbances. However, Fourier analysis
of the pressure history has not yet been conducted.
The thrust history, which is compared in Fig. 12, is
also in a good agreement with the prediction. The
accuracy of the present solver is likely to improve by
the addition of dynamic effects on the burn rate dur-
ing ignition, as well as by the incorporation of nozzle
ablation into the simulation. Contours of static tem-
perature in the mid-section of the rocket motor are
displayed in Fig. 13.

8 Conclusions

A recently developed flow solver for complex 3-D sim-
ulations of solid rocket motors in was presented. The
numerical approaches as well as the implementation
were described in some detail. The flexible modular
structure of the solver allows an easy coupling to ad-
ditional physical modules. The flow solver is designed
in such a way that it can exchange boundary values
with codes from other disciplines, like for example
from structural mechanics. The flow solver contains
two different grid motion schemes. The first one is
based on a block-wise application of TFI for the grid
deformations. The second algorithm smoothes the
grid globally by using a Laplacian operator. Compar-
isons of numerical results to experimental data or to
other predictions were presented for three solid rocket
motors. It was demonstrated that despite the lack of
tuned correlations, the current flow solver is able to
predict even a full burn out with good accuracy.
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Figure 1: Adjustment of the boundaries of a block
(2) which does not share a cell face with the deform-
ing body (gray). Boundary movement is communi-
cated through the blocks 1 and 3. Top: undeformed,
bottom: deformed configuration.
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Figure 2: Parallel performance for a scaled problem
with 20,000 cells per processor on ASCI White.

Figure 3: Motor 13; fine grid with 414,208 cells and
128 blocks.
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Figure 4: Motor 13; time history of the head-end
pressure for two different grids.

Figure 5: Motor 13; contours of the static tempera-
ture (in degree Kelvin) in the mid-section at t = 0.1s.
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Figure 6: Motor 13; contours of the static temper-
ature and the velocity vectors in the mid-section of
the head end at t = 0.1s.

Figure 7: Titan IV; grid with 2,044,200 cells and
512 blocks (only the block boundaries are shown).
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Figure 8: Titan IV; time history of the head-end
pressure.

Figure 9: Titan IV; contours of the static tempera-
ture in the mid-section at t = 30ms.
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Figure 10: Attitude control motor; grid with
220,416 cells and 128 blocks.
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Figure 11: Attitude control motor; time history
of the head-end pressure for two different discretiza-
tions.
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Figure 12: Attitude control motor; time history of
the total thrust.

Figure 13: Attitude control motor; contours of
static temperature (in degree Kelvin) in the mid-
section at t = 6.6ms.


